Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur





télécharger 70.36 Kb.
titreGeneralites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur
date de publication08.02.2017
taille70.36 Kb.
typeDocumentos
d.20-bal.com > droit > Documentos

COMBUSTION



INTRODUCTION : Pourquoi la combustion ?
- Pour produire de la chaleur et la transmettre à des installations d’eau chaude, à partir d’énergie fossile.
s
Pertes Pertes

Fumées Parois
s Prenons le cas d’une chaudière mixte, équipée d’un brûleur.



Chauffage

Eau Chaude Sanitaire


Combustible
Comburant O2
Etincelles





  1. GENERALITES

11. Définition


La combustion est une réaction chimique d’oxydation exothermique.

C
ombustible + Comburant Produits de Combustion +Chaleur


G
az ,bois... Air CO2 , H2O, N2, …

12. Nature et composition de l’air comburant


Le comburant est l’air atmosphérique dont la composition est la suivante :
Oxygène : O2 Dioxyde de carbone : CO2

Azote : N2 Gaz rares : Néon, Krypton…
En combustion, pour déterminer les quantités d’air théoriques, on utilise les pourcentages suivants :





% en Masse

% en Volume

O2

24

21

N2

76

79


13. Caractéristiques des combustibles
La composition générale des combustibles courants est donnée ci-dessous :
On distingue les combustibles suivants accompagnés de leurs compositions générales :





SOLIDE

LIQUIDE

GAZ Hydrocarbures

Constituants

C, H2O, Cendres

C ; H2 ; S

Mélanges CnHm, N2, CO2

Combustibles courants

Charbons, Anthracites, Bois

Fioul Domestique

Fiouls Lourds n°1 et 2

Gaz naturels, Butane et Propane commerciaux, Air propané


Exemple : gaz naturel = CH4 majoritairement
Bois « sec » : en moyenne 19% d’eau, 1% de cendres, 40% de Carbone, 5% d’Hydrogène, 35% d’Azote et d’Oxygène, mais la teneur en eau peut varier de quelques pour cents.
14. Produits de combustion (fumées)
Les produits de combustion (fumées) sont constitués de :



Principalement : Eventuellement :

4.Oxyde de soufre SO2

1. Dioxyde de carbone : CO2 5. Oxygène : O2

6. Monoxyde de carbone :CO

2. Vapeur d’eau : H2O 7. NOx : NO, NO2

3. Azote : N2 8. Hydrogène libre : H2

9. Imbrûlés solides ou gazeux

La présence et le pourcentage de ces constituants présents dans les produits de combustion permettront :

a) De définir le type de combustion

b) D’envisager les risques potentiels : - d’asphyxie pour les personnes

  • de corrosion du matériel (chaudière, conduit de fumées)

  • de pollutions atmosphériques

c) D’affiner les réglages du brûleur et d’améliorer les rendements.

Compléments sur les NOx (Oxydes d’azote)


L’azote de l’air reste globalement neutre dans la combustion. Une infime partie est oxydée.Ils ne sont pas pris en compte dans les équations de combustion classique, mais sont à l’origine des pluies acides par formation d’acide nitrique. C’est pourquoi des textes de loi limitant les rejets de NOx existent selon le combustible et la puissance.


15. Les différents types de combustion



Il ne suffit pas de mettre en présence un combustible, de l’air et une étincelle pour réaliser une bonne combustion : Selon la quantité d’air, les réglages de l’appareil de combustion, la cheminée…, la combustion sera de plus ou moins bonne « qualité », c'est-à-dire :

- Sans produit toxique pour l’homme ou l’environnement dans les fumées

- Avec un bon rendement
C’est pour cette raison que l’on étudie les différents types de combustion
La combustion est complète si la totalité du combustible est oxydée. A contrario elle est incomplète s’il y a présence de combustible dans les fumées, ou si certains composants sont partiellement oxydés (ex : CO)
La combustion est dite stœchiométrique, neutre ou théorique si l’air comburant est en quantité suffisante et strictement nécessaire à la combustion complète de l’unité de combustible. Les fumées ne contiennent pas d’oxygène.
La combustion est oxydante ou en excès d’air si une partie de l’air comburant est utilisé pour l’oxydation du combustible, l’autre partie se retrouvant dans les fumées.
La combustion est dite réductrice ou en défaut d’air si le volume d’air admis pour la combustion de l’unité de combustible est inférieur au volume d’air stœchiométrique ; l’oxygène y est néanmoins totalement utilisé donc pas de présence d’O2 dans les fumées, mais il y a formation de monoxyde de carbone (CO).

Sans entrer dans les formules chimiques de combustion, il est indispensable de connaître les paramètres de combustion suivants :

- Les pouvoirs calorifiques des combustibles

  1. Les Pouvoirs Calorifiques :




Le pouvoir calorifique d’un combustible est la quantité de chaleur dégagée par la combustion complète, sous la pression atmosphérique normale, de l’unité de combustible, celui-ci ainsi que les produits de combustion étant à 0 °C.
 Notation : PC

 Unité : [kJ/kg(n) de combustible] ou [kJ/m3(n) de combustible]

 Remarque : (n) signifie que toutes les réactions se produisent dans les conditions normales de température et de pression.
Le pouvoir calorifique est dit inférieur (PCI) quand l’eau résultant de la combustion de l’hydrogène et des hydrocarbures est supposée à l’état de vapeur dans les produits de combustion.
Le pouvoir calorifique est supérieur (PCS) quand cette eau de combustion est ramenée à l’état liquide dans les fumées.





Lv=2500 kJ/kg aux CNTP
Masse d’eau contenue dans les fumées

Elle dépend de la quantité d’hydrogène présente dans le combustible
Exemple : m(H2O) = 1,6 kg dans les fumées pour la combustion de 1 m3(n) de gaz naturel
Quelques PCI/PCS

Gaz naturel : PCI et PCS d’environ 10.2 kWh / m3(n) et 11.3 kWh / m3(n)

Fioul domestique : PCI et PCS d’environ 10 kWh / l(n) et 11 kWh / l(n)
  1. LA COMBUSTION REELLE

31. Définition


La combustion stœchiométrique est la base des calculs théoriques en combustion. Les analyses réalisées ou les résultats fournis d’une combustion réelle, d’un combustible de composition connue, vont permettre de la définir précisément, par comparaison avec les résultats de la combustion neutre. Ainsi, par rapport à la théorie, on pourra définir :

  • La combustion en excès d’air

  • La combustion en défaut d’air

En pratique, c’est l’analyse des fumées sur site qui donnera les renseignements techniques nécessaires à la définition de la combustion réelle.

32. La combustion en excès d’air


On parlera de « combustion en excès d’air » chaque fois que l’on détectera la présence d’oxygène dans les produits de combustion. L’excès d’air peut résulter soit d’un réglage du volet d’air au niveau du brûleur (brûleur à air soufflé), soit d’une impossibilité à régler l’arrivée d’air (brûleur atmosphérique). Cet excès d’air est indispensable pour une combustion complète

L’air en excès impliquera :

  • une augmentation des pertes par les fumées,

  • une diminution du rendement de la chaudière.


Ainsi cette augmentation entraînera un accroissement des dépenses énergétiques sur une saison de chauffe (consommation de combustible plus importante), qui restent non négligeables même pour de petites puissances de chaudières.


On caractérise l’air en excès par le facteur d’air Fa ou taux d’aération n en utilisant la relation suivante :




soit
Avec : Va : Pouvoir comburivore [m3(n) d’air / unité de combustible]

VEA : Volume d’air en excès  [m3(n) d’air en excès / unité de combustible]
Nota : Généralement « n » est fourni par les relevés réalisés sur site à l’aide d’analyseurs de fumées.








Pourcentage d’excès d’air EA% : EA% = (n-1)*100

33. Le Diagramme d’OSTWALD



Pour caractériser facilement la qualité de la combustion d’une installation, on mesure les taux  CO2 et  O2 dans les fumées, à l’aide d’un analyseur de fumées.
Ensuite, le diagramme permet d’obtenir en fonction du  CO2 mesuré et du  O2 mesuré :

  1. Le type de combustion réelle

  2. Le % d’excès d’air ou de défaut d’air

  3. Le  CO (s’il y a lieu)


Il est défini pour un combustible donné, l’axe des abscisses représente le  O2 et celui des ordonnées représente le  CO2. Il comporte en général :

  • La droite des combustions oxydantes ( CO = 0%) graduée en excès d’air,

  • Une graduation en défaut d’air sur l’axe vertical ( O20%),

  • Le point représentatif de la combustion neutre ( O2=0% et  CO = 0%) pour  CO2max,

  • Les droites d’égale teneur en CO ( CO = cte) parallèle à la droite des combustions oxydantes,

  • Les droites d’égal excès ou défaut d’air


Les diagrammes d’OSTWALD sont applicables à tous les combustibles, ils sont insensibles aux teneurs en eau et en cendres des combustibles solides, mais ne sont plus utilisables si la teneur en imbrûlés solides dépasse 3%. Les diagrammes pratiques sont limités à leur partie utile (O2 <21%).

F
igure 1 : Diagramme d'OSTWALD du FOD
Exemple : On mesure  CO2 =11% et  O2 =6%

Sur le diagramme, on place le point, qui sur la diagonale supérieure : La combustion est donc complète, avec 38 % d’excès d’air, et 0%de CO

En fonction de la fiche technique du matériel de combustion, on peut ensuite modifier les réglages pour diminuer l’excès d’air.
34. Température de rosée des fumées
Température à laquelle la vapeur d’eau des fumées se condense : Elle dépend du combustible et de l’excès d’air. La chaudière doit présenter aux fumées une température de surface inférieure ou égale (environ 50/55 °C pour le gaz) pour récupérer cette chaleur de condensation.

4.Rendements de combustion, de générateurs
A partir de la puissance absorbée par le brûleur, quelles sont les différentes puissances à calculer ? voir schéma page suivante
41. Brûleur en marche
Schéma de principe




41.1 Puissance absorbée : générée par la combustion du combustible
Pa = qm * PC ou = qv * PC
kW kg/s kJ/kg m3/s kJ/m3

qm ou qv : débit de combustible

PC : Pouvoir Calorifique du combustible
Suivant le PC que l’on considère, (PCI ou PCS), on obtient Pa en kW PCI ou PCS. Pa est repéré A ou A’ sur le schéma

41.2 Puissance utile : Puissance transmise au fluide caloporteur

repéré C sur le schéma
Pu = Qm * C * (Ts – Te) à calculer de part et d’autre de la chaudière
kW kg/s kJ/kg.K K

Ts, Te : Température de sortie / d’entrée d’eau à la chaudière

C : Capacité calorifique de l’eau = 4.18 kJ/kg.K pour de l’eau pure

Qm : débit massique de l’eau dans la chaudière

41.3 Pertes par les fumées
On distingue 2 types de pertes : pertes en chaleur sensible (température des fumées) et pertes en chaleur latente (pertes de vapeur d’eau)
pertes en chaleur sensible

A calculer à partir d’abaques, ou de la capacité calorifique des fumées, ou des enthalpies spécifiques des composants des fumées, ou encore par des formules empiriques (ex : SIEGERT)

Pf = qmf * cf * (Tf - Ta)
kW kg /s kJ/kg.K K
Tf : Température des fumées

Ta: Température de l’air ambiant

Qmf : débit massique des fumées

Qvf : débit volumique des fumées

Avec :

qmf = qvf * ρf
kg/s m3(n)/s kg/m3(n)

qvf = VFH * q(combustible)

m3(n)/s m3(n)/unité(n) unité(n)/s

Remarque : dans le cas d’une chaudière à condensation, VFH sera remplacé par VFS car la vapeur d’eau s’est condensée

Formule de SIEGERT : en %
%Pf = X * (Tf - Ta) / %CO2

Avec X : Coefficient dépendant du combustible

X = 0.57 FOD

X = 0.49 gaz naturel

%Pf : % de pertes des fumées

% CO2 : Taux de CO2

Cette formule ne tient pas compte des pertes par les imbrûlés (CO, C)

pertes en chaleur latente

elles dépendent de la masse d’eau m(H2O) qui s’échappe dans les fumées et qui n’est pas condensée, pour une unité normale de combustible
perte = m(H2O) * Lv

kJ kg kJ/kg
Lv : chaleur latente de condensation de l’eau : environ 2500 kJ/kg
41.4 Pertes par les parois de la chaudière
Par convection et rayonnement dans la chaufferie
Ces pertes se déduisent des résultats précédents, ou bien sont données par le constructeur de chaudière en % de la puissance utile


42. Brûleur à l’arrêt
Pertes d’entretien

Brûleur à l’arrêt, les pertes de chaleur se font par les parois de la chaudière, par balayage

43. Rendements
431. Rendements de combustion (voir schéma)
Rendement de combustion sur PCS
Rc = B / A’
B : dans le cas d’une chaudière à condensation, il faut tenir compte de la masse d’eau condensée qui dégage de la chaleur latente
Rendement de combustion sur PCI (parfois supérieur à 100 %...)
Rc = B / A
Remarque : Dans le cas d’une chaudière sans condensation, lorsque les pertes par les fumées sont exprimées en %, il suffit de faire :

Rc (PCI) = 100 - %pertes fumées
Comment passer du Rc (PCI) au Rc (PCS) ?

Rc (PCI) = Rc (PCS) *PCS / PCI
432. Rendement utile sur PCS ou sur PCI
Ru = Pu / Pa = C / A’ (ou A)
Remarque : Dans le cas d’une chaudière sans condensation, lorsque les pertes par les fumées et les pertes par les parois sont exprimées en %, il suffit de faire :
Ru (PCI) = 100 - %pertes fumées - %pertes parois

433. Rendement global
Rg = Qu / Qa
Qu = Energie utile cédée à l’eau (kJ)

Qa = Energie absorbée par le brûleur (kJ )
434. Cas des chaudières à condensation
Dans ce cas, on récupère :

  • de la chaleur sensible, en rejettant des fumées plus froides

  • de la chaleur latente, en condensant une partie de la vapeur d’eau des fumées à condition de rejetter les fumées à une T° < T°rosée fumées


Rendement de combustion du gaz sur PCI : (formule empirique donnée par GDF)

RC(PCI) = 100 – (35 n +6) *(Tf – Ta)/1000 + 6.6 * m
Avec n : facteur d’air, m masse d’eau condensée en kg par m3(n) de gaz, Tf température des fumées, Ta température ambiante de la chaufferie





Exercices combustion :
- Calculs de puissances et rendements sur des chaudières

- Analyses de combustion
Exemple : Chaudière à condensation gaz
Documents ressources :


  • Diagramme d’Ostwald du gaz naturel

  • A baque de pertes par les fumées

  • Caractéristiques du gaz :

  • Va = 10.6 m3(n)

  • PCI = 40.1 MJ

  • PCS = 44.5 MJ



Une chaudière gaz de 70 kW utile est située dans un local à 15 °C, est alimentée en gaz à 20 mbar. Le constructeur annonce un rendement de 92 %
Une analyse de combustion donne :

  • [CO2] = 10 %

  • [O2] = 3 %

  • T°fumées = 160 °C



Questions



1ère partie


  1. Situer le point de combustion sur le diagramme d’Ostwald. En déduire l’excès d’air e et le taux de CO. Quel est le type de combustion ?




  1. Sur l’abaque de pertes par les fumées, déterminer les pertes de fumées sur PCI en %, puis en kJ. Calculer les pertes par les parois en %, puis en kJ.




  1. En considérant que le gaz est du CH4, retrouver la valeur annoncée du PCS. Calculer les rendements utile et de combustion sur PCS




  1. Calculer le débit de gaz en m3(n)/h, puis en m3/h


2ème partie
On place un récupérateur sur les fumées de la chaudière, placé hydrauliquement en série avant la chaudière.

En 1 h de fonctionnement, on récupère les masses de condensation sur les fumées suivant la température de retour d’eau, on note également la température des fumées après le récupérateur.



Teau retour °C

Masse d’eau récupérée en kg

Tfumées °C

35

9

55

45

7.5

66

55

1

80




  1. Faire un schéma de principe représentant la chaudière, le récupérateur, le circuit de fumées et le circuit hydraulique




  1. Evaluer le gain en chaleur sensible en kJ du récupérateur selon la Teau, en utilisant la formule ci après, pour 1 h de fonctionnement (il faut calculer le volume de fumées en 1 h)


Pperdue = VFH.fh.cfh.Tfumées

Avec .fh : 1,2 kg / m3(n)

Cfh = 1.4 kJ / (kg.K)

VFH volume des fumées humides en m3(n) = 17 m3(n)


  1. Calculer le gain pour 1 m3(n) de gaz, puis en %PCI pour 1 m3(n) de gaz




  1. Evaluer le gain en chaleur latente du récupérateur selon Teau. On donne Lv = 2500 kJ/kg, chaleur latente de condensation de l’eau aux CNPT




  1. Calculer le gain pour 1 m3(n) de gaz, puis en %PCI pour 1 m3(n) de gaz






similaire:

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconTd c1 : vitesse d’une reaction chimique

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconNote de dossier
«OM, cendres, matériaux de démolition, vieilles ferrailles, déchets divers, à l’exclusion d’hydrocarbures et de produits ou déchets...

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur icon1- notions de chaleur, travail et énergie interne: 1- chaleur Q: 1- définitions

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconDans les réactions chimiques on trouve deux une réversible et l’autre...
«état d’équilibre» ou tous les participants sont présent en quantités déterminées

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconParmi les multiples formes de l’énergie, la chaleur est celle à laquelle...
«insécables», et IL expliquait de cette façon les phénomènes de dilatation ou de contraction que la chaleur ou le froid produisent...

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconLes photos haute définition des produits retenus sont consultables et téléchargeables sur l’

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconSuivi d’une transformation chimique par spectrophotométrie

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconTous les produits, retirés par le client dans un point retrait ou...
«Client» agissant soit à titre individuel, soit pour le compte d'une société et, d'autre part, l’entreprise lacamasa patissier traiteur...

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconTp-cours n°3 de chimie ( ts) : Suivi temporel d’une transformation...

Generalites 11. Définition La combustion est une réaction chimique d’oxydation exothermique. C ombustible + Comburant Produits de Combustion +Chaleur iconDeux visions opposées de l’ajustement épargne investissement La loi...
«thésaurisation» qui consiste à amasser de la monnaie en dehors du circuit économique, c’est donc une fuite hors du circuit que Say...






Tous droits réservés. Copyright © 2016
contacts
d.20-bal.com